3a) Montrer que la suite `(u_n)` est croissante
Méthode 1
On a ` u_(n+1) -u_n = (2u_n)/(1+u_n^2) -u_n `
` = (2u_n -u_n -u_n^3)/(1+u_n^2) `
` = (u_n -u_n^3)/(1+u_n^2) `
` = (u_n(1+u_n)(1-u_n))/(1+u_n^2) `
Puisque ` 0 <= u_n <= 1 ` alors ` 1-u_n >= 0 ` et ` 1+u_n >= 0 ` et ` u_n >= 0 `
`=> (u_n(1+u_n)(1-u_n))/(1+u_n^2) >= 0 `
`=> u_(n+1) -u_n >= 0 `
et par suite la suite `(u_n) ` est croissante
Méthode 2 :
On a ` u_(n+1) -u_n = (2u_n)/(1+u_n^2) - u_n `
` = u_n ( 2/(1+u_n^2) -1) `
Puisque ` 1+u_n^2 <= 2 `
` => 1 <= 2/(1+u_n^2) `
`=> 0 <= 2/(1+u_n^2) -1 `
` => 0 <= u_n ( 2/(1+u_n^2) -1) ` car ` 0 <= u_n `
`=> u_(n+1) -u_n >= 0 `
et par suite la suite `(u_n)` est croissante