2) ` sqrt(x+6) <= sqrt(3-2x) `
l inéquation est définie si ` x+6 >= 0 ` et `3-2x >= 0 `
On a ` x +6 >= 0 <=> x >= -6 <=> x in [-6 , +infty[ `
On a ` 3-2x>= 0 <=> 3 >= 2x >= 3/2 >= x `
`<=> x in ]-infty , 3/2] `
alors `D_e = ]-infty , 3/2] cap [-6 , +infty[ = [-6 , 3/2] `
soit ` x in D_e `
on a ` sqrt(x+6) <= sqrt(3-2x) `
` sqrt(x+6)^2 <= sqrt(3-2x)^2 `
` x+6 <= 3-2x `
Résolvons l 'inéquation ` x+6 <= 3-2x `
on a ` x+6 <= 3-2x `
` x+2x <= 3 -6 `
` 3x <= -3 `
` x <= -3/3 `
` x<= -1 `
alors l'ensemble des solutions de l inéquation est ` [-6 , 3/2] cap ]-infty , -1] = [-6, -1]`