1 b) En déduire que `abs(b)=2sqrt(2)` et `arg(b)= (5pi)/(12)[2pi]`
On a ` b = (1+i)a ` alors ` abs(b)= abs((1+i)a)`
` = abs(1+i)xxabs(a) `
` = sqrt(1^2+1^2) xxsqrt(sqrt(3)^2+1^2)`
` = sqrt(2)xxsqrt(4) `
` = 2sqrt(2) `
et de meme on a ` arg(b)= arg((1+i)a)[2pi]`
` = arg(1+i) + arg(a) [2pi]`
Déterminons un argument de `1+i `
On a `abs(1+i)= sqrt(1^2+1^2)= sqrt(2) `
`=> 1+i = sqrt(2) ( 1/(sqrt(2)) + i 1/(sqrt(2))) `
` = sqrt(2) ( (sqrt(2))/2 + i (sqrt(2))/2) `
` = sqrt(2) ( cos((pi)/4) + i sin((pi)/4)) `
Déterminons un argument de `a= sqrt(3) +i `
On a ` abs(a)= sqrt(sqrt(3)^2+1^2) = 2 `
`=> sqrt(3) + i = 2((sqrt(3))/2 +1/2i ) `
` = 2( cos((pi)/6) + i sin((pi)/6)) `
il s'ensuit que `arg(b)= arg(a) + arg(1+i)[2pi] = (pi)/4 +(pi)/6 [2pi]`
` = (3pi+2pi)/(12)[2pi]`
` = (5pi)/(12)[2pi]`