3) En déduire une valeur de chacun des nombres : ` cos((pi)/(12)) , sin((pi)/(12)) , cos((7pi)/(12)) , sin((7pi)/(12)) `
On a ` z_1xxz_2 = underbrace{ 1+ sqrt(3) + i (sqrt(3) -1)}_{ text{ forme algébrique} } = underbrace{ [ 2sqrt(2) , (pi)/(12)] }_{ text{ forme trigonométrique }} `
`=> 1+ sqrt(3) + i (sqrt(3) -1) = 2sqrt(2) ( cos((pi)/(12)) + i sin((pi)/(12))) `
`=> 1 + sqrt(3)= 2sqrt(2)xx cos((pi)/(12)) ` et ` sqrt(3) -1 = 2sqrt(2)xx sin((pi)/(12)) `
`=> cos((pi)/(12)) = (1+sqrt(3))/(2sqrt(2)) = (sqrt(2)(1+sqrt(3)))/(2xx2)= ( sqrt(2) +sqrt(6))/4 `
et ` sin((pi)/(12)) = (sqrt(3) -1)/(2sqrt(2)) = (sqrt(2)(sqrt(3) -1))/(2xx2)= ( sqrt(6) -sqrt(2) )/4 `
On a ` z_2/z_3 = ( 1-sqrt(3))/4 + i (sqrt(3)+1)/4 = [ (sqrt(2))/2 , (7pi)/(12)] `
` ( 1-sqrt(3))/4 + i (sqrt(3)+1)/4 = 1/(sqrt(2)) xx ( cos((7pi)/(12)) + i sin((7pi)/(12)) ) `
`=> 1/(sqrt(2)) cos((7pi)/(12)) = ( 1-sqrt(3))/4 ` et ` 1/(sqrt(2)) sin((7pi)/(12)) = (sqrt(3)+1)/4 `
`=> cos((7pi)/(12)) = ( sqrt(2)-sqrt(6))/4 ` et ` sin((7pi)/(12)) = (sqrt(6)+sqrt(2) )/4 `